Capturing sequence variation among flowering-time regulatory gene homologs in the allopolyploid crop species Brassica napus
نویسندگان
چکیده
Flowering, the transition from the vegetative to the generative phase, is a decisive time point in the lifecycle of a plant. Flowering is controlled by a complex network of transcription factors, photoreceptors, enzymes and miRNAs. In recent years, several studies gave rise to the hypothesis that this network is also strongly involved in the regulation of other important lifecycle processes ranging from germination and seed development through to fundamental developmental and yield-related traits. In the allopolyploid crop species Brassica napus, (genome AACC), homoeologous copies of flowering time regulatory genes are implicated in major phenological variation within the species, however the extent and control of intraspecific and intergenomic variation among flowering-time regulators is still unclear. To investigate differences among B. napus morphotypes in relation to flowering-time gene variation, we performed targeted deep sequencing of 29 regulatory flowering-time genes in four genetically and phenologically diverse B. napus accessions. The genotype panel included a winter-type oilseed rape, a winter fodder rape, a spring-type oilseed rape (all B. napus ssp. napus) and a swede (B. napus ssp. napobrassica), which show extreme differences in winter-hardiness, vernalization requirement and flowering behavior. A broad range of genetic variation was detected in the targeted genes for the different morphotypes, including non-synonymous SNPs, copy number variation and presence-absence variation. The results suggest that this broad variation in vernalization, clock and signaling genes could be a key driver of morphological differentiation for flowering-related traits in this recent allopolyploid crop species.
منابع مشابه
Post-polyploidisation morphotype diversification associates with gene copy number variation
Genetic models for polyploid crop adaptation provide important information relevant for future breeding prospects. A well-suited model is Brassica napus, a recent allopolyploid closely related to Arabidopsis thaliana. Flowering time is a major adaptation trait determining life cycle synchronization with the environment. Here we unravel natural genetic variation in B. napus flowering time regula...
متن کاملFlowering Time Gene Variation in Brassica Species Shows Evolutionary Principles
Flowering time genes have a strong influence on successful reproduction and life cycle adaptation. However, their regulation is highly complex and only well understood in diploid model systems. For crops with a polyploid background from the genus Brassica, data on flowering time gene variation are scarce, although indispensable for modern breeding techniques like marker-assisted breeding. We ha...
متن کاملSequence variation and functional analysis of a FRIGIDA orthologue (BnaA3.FRI) in Brassica napus
BACKGROUND Allelic variation at the FRIGIDA (FRI) locus is a major contributor to natural variation of flowering time and vernalization requirement in Arabidopsis thaliana. Dominant FRI inhibits flowering by activating the expression of the MADS box transcriptional repressor FLOWERING LOCUS C (FLC), which represses flowering prior to vernalization. Four FRI orthologues had been identified in th...
متن کاملTargeted deep sequencing of flowering regulators in Brassica napus reveals extensive copy number variation
Gene copy number variation (CNV) is increasingly implicated in control of complex trait networks, particularly in polyploid plants like rapeseed (Brassica napus L.) with an evolutionary history of genome restructuring. Here we performed sequence capture to assay nucleotide variation and CNV in a panel of central flowering time regulatory genes across a species-wide diversity set of 280 B. napus...
متن کاملGenome-wide association study reveals the genetic architecture of flowering time in rapeseed (Brassica napus L.)
Flowering time adaptation is a major breeding goal in the allopolyploid species Brassica napus. To investigate the genetic architecture of flowering time, a genome-wide association study (GWAS) of flowering time was conducted with a diversity panel comprising 523 B. napus cultivars and inbred lines grown in eight different environments. Genotyping was performed with a Brassica 60K Illumina Infi...
متن کامل